Comment on 'Generalized commutators and deformation of strong-coupling superconductivity'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 272619
(http://iopscience.iop.org/0305-4470/27/7/037)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:09

Please note that terms and conditions apply.

COMMENT

Comment on 'Generalized commutators and deformation of strong-coupling superconductivity'

Allan Solomon and Roger McDermott
Faculty of Mathematics, Open University, Milton Keynes, MK7 6AA, UK

Received 3 November 1993

Abstract

It is shown that a commonly used deformation of the fermionic canonical anticommutation relations is equivalent to the undeformed relations.

Chen and Ho [1] discuss a strong-coupling model of superconductivity based on a microscopic hamiltonian expressed in terms of fermionic operators satisfying

$$
\begin{align*}
& a a^{\dagger}+q a^{\dagger} a=q^{N} \\
& {\left[N, a^{\dagger}\right]=a^{\dagger}} \tag{1}\\
& a^{2}=0
\end{align*}
$$

They refer to these as fermionic q-oscillators.
In fact, equation (1) is equivalent to the usual anticommutation relation

$$
\begin{align*}
a a^{\dagger}+a^{\dagger} a & =1 \\
{\left[N, a^{\dagger}\right] } & =a^{\dagger} \tag{2}\\
a^{2} & =0
\end{align*}
$$

and describes ordinary fermions.
This equivalence may be seen as follows:
(A) The (usual) fermionic operators a, a^{\dagger} satisfying equation (2) also satisfy equation (1). It is easy to show that here $N \equiv a^{\dagger} a$ is idempotent, so

$$
\begin{equation*}
\mathrm{e}^{s N}=1+N\left(\mathrm{e}^{s}-1\right) \tag{3}
\end{equation*}
$$

Setting $q \equiv \mathrm{e}^{s}$, we may rewrite equation (3) as

$$
a a^{\dagger}+q a^{\dagger} a=q^{N}
$$

(B) Operators a, a^{\dagger} satisfying equation (1) also satisfy equation (2). From equation (1) it follows (and the authors note) that the eigenvalues of N are 0 and 1 . Therefore $[N]=N$ (on number states, which form a basis) where

$$
[N]=\frac{q^{N}-q^{-N}}{q-q^{-1}}
$$

and

$$
\begin{aligned}
a^{\dagger} a & =[N]=N \\
a a^{\dagger} & =[1-N]=1-N
\end{aligned}
$$

which gives

$$
a a^{\dagger}+a^{\dagger} a=1
$$

The authors' assumption that $a^{2}=0$ is not strictly necessary. If, assuming equation (1), we attempt to build up N eigenstates from the vacuum $|0\rangle$ defined by $a|0\rangle=0$, we see that $|2\rangle=a^{\dagger}[1\}$ is not normalizable, so there is only $\{0,1\}$ occupancy. .

References

[1] Chen Wei-Yeu and Ho Choon-Lin 1993 J. Phys. A: Math. Ger. 26 4827-33

