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COMMENT 

Comment on ‘Generalized. commutators and deformation 
of strong-coupling superconductivity’ 

Allan Solomon and Roger McDermott 
Faculty of Mathematics, Open University, Milton Keynes, MK7 6AA, UK 

Received 3 November 1993 

Abstract. It is shown that a commonly used deformation of the fermionic canonical 
anticommutation relations is equivalent to the undeformed relations. 

Chen and Ho [l] discuss a strong-coupling model of superconductivity based on a 
microscopic hamiltonian expressed in terms of fermionic operators satisfying 

aut +qat, = qN 

U2 = 0. 
[N, at] = at (1) 

They refer to these as fermionic q-oscillators. 
In fact, equation (1) is equivalent to the usual anticommutation relation 

ua+ +uta = 1 
[N,a t]  =at  

U2 = O  
and describes Oidinary fermions. 

(A) The (usual) fermionic operators a, at satisfying equation (2) also satisfy equation (1). 
It is easy to show that here N =uta is idempotent, so 

(3) 

This equivalence may be seen as follows: 

JN = 1 + N(eS - 1). 

ua+ +quia = qN. 
Setting q = eS,  we may rewrite equation (3) as 

(E!) Operators U ,  at satisfying equation (1) also satisfy equation (2). From equation (1) it 
follows (and the authors note) that the eigenvalues of N are 0 and 1. Therefore [NI = N 
(on number states, which form a basis) where 

and 
uta = [NI = N 
aut = [ l -  NI = 1 - N  
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which gives 

The authors’ assumption that a2 = 0 is not stnictly necessary. If, assuming equation (I), 
we attempt to build up N eigenstates from the vacuum 10) defined by a10) = 0, we see that 
12) = atll) is not normalizable, so there is only IO, l} occupancy. . 

a d + a t a = l .  
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